MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. CC140C Copper

N09777 nickel belongs to the nickel alloys classification, while CC140C copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is N09777 nickel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 580
340
Tensile Strength: Yield (Proof), MPa 240
230

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1440
1100
Melting Onset (Solidus), °C 1390
1040
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 38
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 7.4
2.6
Embodied Energy, MJ/kg 100
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
34
Resilience: Unit (Modulus of Resilience), kJ/m3 140
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
10
Strength to Weight: Bending, points 19
12
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 19
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 28.5 to 47.5
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.0 to 3.0
0