MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. CR006A Copper

N09777 nickel belongs to the nickel alloys classification, while CR006A copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N09777 nickel and the bottom bar is CR006A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 580
230
Tensile Strength: Yield (Proof), MPa 240
140

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1390
1040
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 38
31
Density, g/cm3 8.1
9.0
Embodied Carbon, kg CO2/kg material 7.4
2.6
Embodied Energy, MJ/kg 100
41
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
31
Resilience: Unit (Modulus of Resilience), kJ/m3 140
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
7.1
Strength to Weight: Bending, points 19
9.3
Thermal Shock Resistance, points 16
8.1

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 19
0
Copper (Cu), % 0
99.9 to 100
Iron (Fe), % 28.5 to 47.5
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Silver (Ag), % 0
0 to 0.015
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.0 to 3.0
0