MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. SAE-AISI 1086 Steel

N09777 nickel belongs to the nickel alloys classification, while SAE-AISI 1086 steel belongs to the iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N09777 nickel and the bottom bar is SAE-AISI 1086 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
11
Fatigue Strength, MPa 190
300 to 360
Poisson's Ratio 0.29
0.29
Reduction in Area, % 57
28 to 45
Shear Modulus, GPa 77
72
Shear Strength, MPa 400
450 to 520
Tensile Strength: Ultimate (UTS), MPa 580
760 to 870
Tensile Strength: Yield (Proof), MPa 240
480 to 580

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 960
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 38
1.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 7.4
1.4
Embodied Energy, MJ/kg 100
19
Embodied Water, L/kg 200
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
79 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 140
610 to 890
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
27 to 31
Strength to Weight: Bending, points 19
24 to 26
Thermal Shock Resistance, points 16
26 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0.8 to 0.93
Chromium (Cr), % 14 to 19
0
Iron (Fe), % 28.5 to 47.5
98.5 to 98.9
Manganese (Mn), % 0 to 1.0
0.3 to 0.5
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 2.0 to 3.0
0