MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. C17500 Copper

N09777 nickel belongs to the nickel alloys classification, while C17500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N09777 nickel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
6.0 to 30
Fatigue Strength, MPa 190
170 to 310
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 77
45
Shear Strength, MPa 400
200 to 520
Tensile Strength: Ultimate (UTS), MPa 580
310 to 860
Tensile Strength: Yield (Proof), MPa 240
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 960
220
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 38
60
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 7.4
4.7
Embodied Energy, MJ/kg 100
73
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120 to 2390
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
9.7 to 27
Strength to Weight: Bending, points 19
11 to 23
Thermal Shock Resistance, points 16
11 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.35
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 19
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 0
95.6 to 97.2
Iron (Fe), % 28.5 to 47.5
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.0 to 3.0
0
Residuals, % 0
0 to 0.5