MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. C18400 Copper

N09777 nickel belongs to the nickel alloys classification, while C18400 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N09777 nickel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
13 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 400
190 to 310
Tensile Strength: Ultimate (UTS), MPa 580
270 to 490
Tensile Strength: Yield (Proof), MPa 240
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 38
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 7.4
2.6
Embodied Energy, MJ/kg 100
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
54 to 980
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
8.5 to 15
Strength to Weight: Bending, points 19
10 to 16
Thermal Shock Resistance, points 16
9.6 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 19
0.4 to 1.2
Copper (Cu), % 0
97.2 to 99.6
Iron (Fe), % 28.5 to 47.5
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5