MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. C33500 Brass

N09777 nickel belongs to the nickel alloys classification, while C33500 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is N09777 nickel and the bottom bar is C33500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 39
3.0 to 28
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 400
220 to 360
Tensile Strength: Ultimate (UTS), MPa 580
340 to 650
Tensile Strength: Yield (Proof), MPa 240
120 to 420

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 960
120
Melting Completion (Liquidus), °C 1440
930
Melting Onset (Solidus), °C 1390
900
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 13
20

Otherwise Unclassified Properties

Base Metal Price, % relative 38
24
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 7.4
2.7
Embodied Energy, MJ/kg 100
45
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
8.0 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140
69 to 860
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
12 to 22
Strength to Weight: Bending, points 19
13 to 21
Thermal Shock Resistance, points 16
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 19
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 28.5 to 47.5
0 to 0.1
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.0 to 3.0
0
Zinc (Zn), % 0
33.8 to 37.8
Residuals, % 0
0 to 0.4