MakeItFrom.com
Menu (ESC)

N10001 Nickel vs. 2014A Aluminum

N10001 nickel belongs to the nickel alloys classification, while 2014A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10001 nickel and the bottom bar is 2014A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
72
Elongation at Break, % 45
6.2 to 16
Fatigue Strength, MPa 300
93 to 150
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
27
Shear Strength, MPa 550
130 to 290
Tensile Strength: Ultimate (UTS), MPa 780
210 to 490
Tensile Strength: Yield (Proof), MPa 350
110 to 430

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 900
210
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1570
510
Specific Heat Capacity, J/kg-K 390
870
Thermal Expansion, µm/m-K 10
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 9.2
3.0
Embodied Carbon, kg CO2/kg material 15
8.1
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 260
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 280
85 to 1300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 24
19 to 45
Strength to Weight: Bending, points 21
26 to 46
Thermal Shock Resistance, points 25
9.0 to 22

Alloy Composition

Aluminum (Al), % 0
90.8 to 95
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 1.0
0 to 0.1
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 4.0 to 6.0
0 to 0.5
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.0
0.4 to 1.2
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 58 to 69.8
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0.2 to 0.4
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15