MakeItFrom.com
Menu (ESC)

N10001 Nickel vs. 295.0 Aluminum

N10001 nickel belongs to the nickel alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10001 nickel and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 45
2.0 to 7.2
Fatigue Strength, MPa 300
44 to 55
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
27
Shear Strength, MPa 550
180 to 230
Tensile Strength: Ultimate (UTS), MPa 780
230 to 280
Tensile Strength: Yield (Proof), MPa 350
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1570
530
Specific Heat Capacity, J/kg-K 390
880
Thermal Expansion, µm/m-K 10
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 9.2
3.0
Embodied Carbon, kg CO2/kg material 15
7.9
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 260
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 280
77 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 24
21 to 26
Strength to Weight: Bending, points 21
27 to 32
Thermal Shock Resistance, points 25
9.8 to 12

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 4.0 to 6.0
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 58 to 69.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.7 to 1.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.2 to 0.4
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15