MakeItFrom.com
Menu (ESC)

N10001 Nickel vs. 6008 Aluminum

N10001 nickel belongs to the nickel alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10001 nickel and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 45
9.1 to 17
Fatigue Strength, MPa 300
55 to 88
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 550
120 to 170
Tensile Strength: Ultimate (UTS), MPa 780
200 to 290
Tensile Strength: Yield (Proof), MPa 350
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1570
620
Specific Heat Capacity, J/kg-K 390
900
Thermal Expansion, µm/m-K 10
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 9.2
2.7
Embodied Carbon, kg CO2/kg material 15
8.5
Embodied Energy, MJ/kg 200
160
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 280
76 to 360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 24
21 to 29
Strength to Weight: Bending, points 21
28 to 35
Thermal Shock Resistance, points 25
9.0 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 1.0
0 to 0.3
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 4.0 to 6.0
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.0
0 to 0.3
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 58 to 69.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.2 to 0.4
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15