MakeItFrom.com
Menu (ESC)

N10001 Nickel vs. Grade 29 Titanium

N10001 nickel belongs to the nickel alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10001 nickel and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 45
6.8 to 11
Fatigue Strength, MPa 300
460 to 510
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 84
40
Shear Strength, MPa 550
550 to 560
Tensile Strength: Ultimate (UTS), MPa 780
930 to 940
Tensile Strength: Yield (Proof), MPa 350
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 900
340
Melting Completion (Liquidus), °C 1620
1610
Melting Onset (Solidus), °C 1570
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Expansion, µm/m-K 10
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 75
36
Density, g/cm3 9.2
4.5
Embodied Carbon, kg CO2/kg material 15
39
Embodied Energy, MJ/kg 200
640
Embodied Water, L/kg 260
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 280
3420 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
35
Strength to Weight: Axial, points 24
58 to 59
Strength to Weight: Bending, points 21
47 to 48
Thermal Shock Resistance, points 25
68 to 69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 2.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 4.0 to 6.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 58 to 69.8
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0.2 to 0.4
3.5 to 4.5
Residuals, % 0
0 to 0.4