MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. 204.0 Aluminum

N10003 nickel belongs to the nickel alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10003 nickel and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 42
5.7 to 7.8
Fatigue Strength, MPa 260
63 to 77
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 780
230 to 340
Tensile Strength: Yield (Proof), MPa 320
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 930
170
Melting Completion (Liquidus), °C 1520
650
Melting Onset (Solidus), °C 1460
580
Specific Heat Capacity, J/kg-K 420
880
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 13
8.0
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 270
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 240
220 to 350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 24
21 to 31
Strength to Weight: Bending, points 21
28 to 36
Thermal Diffusivity, mm2/s 3.1
46
Thermal Shock Resistance, points 21
12 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.5
93.4 to 95.5
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 6.0 to 8.0
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
4.2 to 5.0
Iron (Fe), % 0 to 5.0
0 to 0.35
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 15 to 18
0
Nickel (Ni), % 64.8 to 79
0 to 0.050
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15