MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. 5154 Aluminum

N10003 nickel belongs to the nickel alloys classification, while 5154 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10003 nickel and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 42
3.4 to 20
Fatigue Strength, MPa 260
100 to 160
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 540
140 to 210
Tensile Strength: Ultimate (UTS), MPa 780
240 to 360
Tensile Strength: Yield (Proof), MPa 320
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 930
190
Melting Completion (Liquidus), °C 1520
640
Melting Onset (Solidus), °C 1460
590
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 13
8.8
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 240
64 to 540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 24
25 to 37
Strength to Weight: Bending, points 21
32 to 42
Thermal Diffusivity, mm2/s 3.1
52
Thermal Shock Resistance, points 21
10 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.5
94.4 to 96.8
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 6.0 to 8.0
0.15 to 0.35
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 0 to 5.0
0 to 0.4
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 15 to 18
0
Nickel (Ni), % 64.8 to 79
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15