MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. 6018 Aluminum

N10003 nickel belongs to the nickel alloys classification, while 6018 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10003 nickel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 42
9.0 to 9.1
Fatigue Strength, MPa 260
85 to 89
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 540
170 to 180
Tensile Strength: Ultimate (UTS), MPa 780
290 to 300
Tensile Strength: Yield (Proof), MPa 320
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 930
160
Melting Completion (Liquidus), °C 1520
640
Melting Onset (Solidus), °C 1460
570
Specific Heat Capacity, J/kg-K 420
890
Thermal Conductivity, W/m-K 12
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
44
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 13
8.2
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 240
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
48
Strength to Weight: Axial, points 24
28 to 29
Strength to Weight: Bending, points 21
34 to 35
Thermal Diffusivity, mm2/s 3.1
65
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 0 to 0.5
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 6.0 to 8.0
0 to 0.1
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
0.15 to 0.4
Iron (Fe), % 0 to 5.0
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 15 to 18
0
Nickel (Ni), % 64.8 to 79
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0.5 to 1.2
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15