MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. 6182 Aluminum

N10003 nickel belongs to the nickel alloys classification, while 6182 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10003 nickel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 42
6.8 to 13
Fatigue Strength, MPa 260
63 to 99
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 540
140 to 190
Tensile Strength: Ultimate (UTS), MPa 780
230 to 320
Tensile Strength: Yield (Proof), MPa 320
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 930
190
Melting Completion (Liquidus), °C 1520
640
Melting Onset (Solidus), °C 1460
600
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 13
8.4
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 270
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 240
110 to 520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 24
23 to 32
Strength to Weight: Bending, points 21
30 to 38
Thermal Diffusivity, mm2/s 3.1
65
Thermal Shock Resistance, points 21
10 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.5
95 to 97.9
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 6.0 to 8.0
0 to 0.25
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 0 to 5.0
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 15 to 18
0
Nickel (Ni), % 64.8 to 79
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0.9 to 1.3
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15