MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. 7075 Aluminum

N10003 nickel belongs to the nickel alloys classification, while 7075 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10003 nickel and the bottom bar is 7075 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 42
1.8 to 12
Fatigue Strength, MPa 260
110 to 190
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 80
26
Shear Strength, MPa 540
150 to 340
Tensile Strength: Ultimate (UTS), MPa 780
240 to 590
Tensile Strength: Yield (Proof), MPa 320
120 to 510

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 930
200
Melting Completion (Liquidus), °C 1520
640
Melting Onset (Solidus), °C 1460
480
Specific Heat Capacity, J/kg-K 420
870
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
98

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 13
8.3
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 270
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
7.8 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 240
110 to 1870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 24
22 to 54
Strength to Weight: Bending, points 21
28 to 52
Thermal Diffusivity, mm2/s 3.1
50
Thermal Shock Resistance, points 21
10 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.5
86.9 to 91.4
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 6.0 to 8.0
0.18 to 0.28
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
1.2 to 2.0
Iron (Fe), % 0 to 5.0
0 to 0.5
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0 to 1.0
0 to 0.3
Molybdenum (Mo), % 15 to 18
0
Nickel (Ni), % 64.8 to 79
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0
Zinc (Zn), % 0
5.1 to 6.1
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15