MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. 711.0 Aluminum

N10003 nickel belongs to the nickel alloys classification, while 711.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10003 nickel and the bottom bar is 711.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 42
7.8
Fatigue Strength, MPa 260
100
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 780
220
Tensile Strength: Yield (Proof), MPa 320
140

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 930
170
Melting Completion (Liquidus), °C 1520
640
Melting Onset (Solidus), °C 1460
610
Specific Heat Capacity, J/kg-K 420
860
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 13
7.9
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 270
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
15
Resilience: Unit (Modulus of Resilience), kJ/m3 240
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
45
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 3.1
61
Thermal Shock Resistance, points 21
9.3

Alloy Composition

Aluminum (Al), % 0 to 0.5
89.8 to 92.7
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 6.0 to 8.0
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
0.35 to 0.65
Iron (Fe), % 0 to 5.0
0.7 to 1.4
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 15 to 18
0
Nickel (Ni), % 64.8 to 79
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15