MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. B535.0 Aluminum

N10003 nickel belongs to the nickel alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10003 nickel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
66
Elongation at Break, % 42
10
Fatigue Strength, MPa 260
62
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 540
210
Tensile Strength: Ultimate (UTS), MPa 780
260
Tensile Strength: Yield (Proof), MPa 320
130

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 930
170
Melting Completion (Liquidus), °C 1520
630
Melting Onset (Solidus), °C 1460
550
Specific Heat Capacity, J/kg-K 420
910
Thermal Conductivity, W/m-K 12
96
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
24
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
82

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 13
9.4
Embodied Energy, MJ/kg 180
160
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
22
Resilience: Unit (Modulus of Resilience), kJ/m3 240
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 24
28
Strength to Weight: Bending, points 21
35
Thermal Diffusivity, mm2/s 3.1
40
Thermal Shock Resistance, points 21
11

Alloy Composition

Aluminum (Al), % 0 to 0.5
91.7 to 93.4
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 6.0 to 8.0
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 0 to 5.0
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 15 to 18
0
Nickel (Ni), % 64.8 to 79
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0.1 to 0.25
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0
Residuals, % 0
0 to 0.15