MakeItFrom.com
Menu (ESC)

N10003 Nickel vs. EN AC-45000 Aluminum

N10003 nickel belongs to the nickel alloys classification, while EN AC-45000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10003 nickel and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 42
1.1
Fatigue Strength, MPa 260
75
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 780
180
Tensile Strength: Yield (Proof), MPa 320
110

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 930
180
Melting Completion (Liquidus), °C 1520
640
Melting Onset (Solidus), °C 1460
520
Specific Heat Capacity, J/kg-K 420
870
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
81

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 13
7.7
Embodied Energy, MJ/kg 180
140
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 240
80
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
47
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 21
24
Thermal Diffusivity, mm2/s 3.1
47
Thermal Shock Resistance, points 21
8.0

Alloy Composition

Aluminum (Al), % 0 to 0.5
82.2 to 91.8
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 6.0 to 8.0
0 to 0.15
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 0 to 0.35
3.0 to 5.0
Iron (Fe), % 0 to 5.0
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0
0 to 0.55
Manganese (Mn), % 0 to 1.0
0.2 to 0.65
Molybdenum (Mo), % 15 to 18
0
Nickel (Ni), % 64.8 to 79
0 to 0.45
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
5.0 to 7.0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 0.35