MakeItFrom.com
Menu (ESC)

N10276 Nickel vs. C95800 Bronze

N10276 nickel belongs to the nickel alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N10276 nickel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 47
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
44
Tensile Strength: Ultimate (UTS), MPa 780
660
Tensile Strength: Yield (Proof), MPa 320
270

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 960
230
Melting Completion (Liquidus), °C 1370
1060
Melting Onset (Solidus), °C 1320
1040
Specific Heat Capacity, J/kg-K 410
440
Thermal Conductivity, W/m-K 9.1
36
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.3
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 70
29
Density, g/cm3 9.1
8.3
Embodied Carbon, kg CO2/kg material 13
3.4
Embodied Energy, MJ/kg 170
55
Embodied Water, L/kg 280
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230
310
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 2.4
9.9
Thermal Shock Resistance, points 23
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 14.5 to 16.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
79 to 83.2
Iron (Fe), % 4.0 to 7.0
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 0.010
0.8 to 1.5
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 51 to 63.5
4.0 to 5.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.080
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 3.0 to 4.5
0
Vanadium (V), % 0 to 0.35
0
Residuals, % 0
0 to 0.5