MakeItFrom.com
Menu (ESC)

N10624 Nickel vs. 712.0 Aluminum

N10624 nickel belongs to the nickel alloys classification, while 712.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10624 nickel and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 45
4.5 to 4.7
Fatigue Strength, MPa 310
140 to 180
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 84
27
Shear Strength, MPa 570
180
Tensile Strength: Ultimate (UTS), MPa 810
250 to 260
Tensile Strength: Yield (Proof), MPa 360
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 930
190
Melting Completion (Liquidus), °C 1580
640
Melting Onset (Solidus), °C 1520
610
Specific Heat Capacity, J/kg-K 410
870
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 9.0
3.0
Embodied Carbon, kg CO2/kg material 13
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 270
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
11
Resilience: Unit (Modulus of Resilience), kJ/m3 300
240 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 25
24 to 25
Strength to Weight: Bending, points 22
30 to 31
Thermal Shock Resistance, points 24
11

Alloy Composition

Aluminum (Al), % 0 to 0.5
90.7 to 94
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 6.0 to 10
0.4 to 0.6
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.25
Iron (Fe), % 5.0 to 8.0
0 to 0.5
Magnesium (Mg), % 0
0.5 to 0.65
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 21 to 25
0
Nickel (Ni), % 53.9 to 68
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0.15 to 0.25
Zinc (Zn), % 0
5.0 to 6.5
Residuals, % 0
0 to 0.2