MakeItFrom.com
Menu (ESC)

N10629 Nickel vs. 295.0 Aluminum

N10629 nickel belongs to the nickel alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10629 nickel and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 45
2.0 to 7.2
Fatigue Strength, MPa 340
44 to 55
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 83
27
Shear Strength, MPa 600
180 to 230
Tensile Strength: Ultimate (UTS), MPa 860
230 to 280
Tensile Strength: Yield (Proof), MPa 400
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
530
Specific Heat Capacity, J/kg-K 390
880
Thermal Expansion, µm/m-K 10
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 9.2
3.0
Embodied Carbon, kg CO2/kg material 15
7.9
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 270
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 360
77 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 26
21 to 26
Strength to Weight: Bending, points 22
27 to 32
Thermal Shock Resistance, points 27
9.8 to 12

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
91.4 to 95.3
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 0.5 to 1.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0 to 0.5
4.0 to 5.0
Iron (Fe), % 1.0 to 6.0
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 65 to 72.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.050
0.7 to 1.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15