MakeItFrom.com
Menu (ESC)

N10629 Nickel vs. ASTM A285 Carbon Steel

N10629 nickel belongs to the nickel alloys classification, while ASTM A285 carbon steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N10629 nickel and the bottom bar is ASTM A285 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 45
30 to 34
Fatigue Strength, MPa 340
150 to 180
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 83
73
Shear Strength, MPa 600
250 to 290
Tensile Strength: Ultimate (UTS), MPa 860
380 to 450
Tensile Strength: Yield (Proof), MPa 400
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 910
400
Melting Completion (Liquidus), °C 1610
1470
Melting Onset (Solidus), °C 1560
1420 to 1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Expansion, µm/m-K 10
12

Otherwise Unclassified Properties

Base Metal Price, % relative 75
1.8
Density, g/cm3 9.2
7.9
Embodied Carbon, kg CO2/kg material 15
1.4
Embodied Energy, MJ/kg 190
18
Embodied Water, L/kg 270
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
110
Resilience: Unit (Modulus of Resilience), kJ/m3 360
94 to 150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
13 to 16
Strength to Weight: Bending, points 22
15 to 17
Thermal Shock Resistance, points 27
12 to 14