MakeItFrom.com
Menu (ESC)

N10629 Nickel vs. Grade C-2 Titanium

N10629 nickel belongs to the nickel alloys classification, while grade C-2 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10629 nickel and the bottom bar is grade C-2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 45
17
Fatigue Strength, MPa 340
200
Poisson's Ratio 0.31
0.32
Rockwell B Hardness 88
84
Shear Modulus, GPa 83
40
Tensile Strength: Ultimate (UTS), MPa 860
390
Tensile Strength: Yield (Proof), MPa 400
310

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 910
320
Melting Completion (Liquidus), °C 1610
1660
Melting Onset (Solidus), °C 1560
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Expansion, µm/m-K 10
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 75
37
Density, g/cm3 9.2
4.5
Embodied Carbon, kg CO2/kg material 15
31
Embodied Energy, MJ/kg 190
510
Embodied Water, L/kg 270
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
61
Resilience: Unit (Modulus of Resilience), kJ/m3 360
460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
35
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 22
26
Thermal Shock Resistance, points 27
30

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Carbon (C), % 0 to 0.010
0 to 0.1
Chromium (Cr), % 0.5 to 1.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 1.0 to 6.0
0 to 0.2
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 65 to 72.4
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4