MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. 354.0 Aluminum

N10665 nickel belongs to the nickel alloys classification, while 354.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10665 nickel and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 45
2.4 to 3.0
Fatigue Strength, MPa 340
92 to 120
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 860
360 to 380
Tensile Strength: Yield (Proof), MPa 400
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 310
530
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1620
600
Melting Onset (Solidus), °C 1570
550
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
110

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 9.3
2.7
Embodied Carbon, kg CO2/kg material 15
7.8
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 360
540 to 670
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 22
52
Strength to Weight: Axial, points 26
37 to 39
Strength to Weight: Bending, points 22
42 to 44
Thermal Diffusivity, mm2/s 3.1
52
Thermal Shock Resistance, points 27
17 to 18

Alloy Composition

Aluminum (Al), % 0
87.3 to 89.4
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
1.6 to 2.0
Iron (Fe), % 0 to 2.0
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.1
8.6 to 9.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15