MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. 5086 Aluminum

N10665 nickel belongs to the nickel alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10665 nickel and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 45
1.7 to 20
Fatigue Strength, MPa 340
88 to 180
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 600
160 to 230
Tensile Strength: Ultimate (UTS), MPa 860
270 to 390
Tensile Strength: Yield (Proof), MPa 400
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 900
190
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1570
590
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 9.3
2.7
Embodied Carbon, kg CO2/kg material 15
8.8
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 360
86 to 770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 26
28 to 40
Strength to Weight: Bending, points 22
34 to 44
Thermal Diffusivity, mm2/s 3.1
52
Thermal Shock Resistance, points 27
12 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 96.3
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0.050 to 0.25
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.7
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15