MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. 6101B Aluminum

N10665 nickel belongs to the nickel alloys classification, while 6101B aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10665 nickel and the bottom bar is 6101B aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 45
9.1 to 13
Fatigue Strength, MPa 340
62 to 70
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 600
120 to 150
Tensile Strength: Ultimate (UTS), MPa 860
190 to 250
Tensile Strength: Yield (Proof), MPa 400
140 to 180

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1570
630
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 11
210
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
57
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
190

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 9.3
2.7
Embodied Carbon, kg CO2/kg material 15
8.3
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 270
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
20 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 360
140 to 240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 26
20 to 25
Strength to Weight: Bending, points 22
27 to 32
Thermal Diffusivity, mm2/s 3.1
87
Thermal Shock Resistance, points 27
8.5 to 11

Alloy Composition

Aluminum (Al), % 0
98.2 to 99.3
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 2.0
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.1
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1