MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. 7075 Aluminum

N10665 nickel belongs to the nickel alloys classification, while 7075 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10665 nickel and the bottom bar is 7075 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 45
1.8 to 12
Fatigue Strength, MPa 340
110 to 190
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 84
26
Shear Strength, MPa 600
150 to 340
Tensile Strength: Ultimate (UTS), MPa 860
240 to 590
Tensile Strength: Yield (Proof), MPa 400
120 to 510

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 900
200
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1570
480
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
98

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 9.3
3.0
Embodied Carbon, kg CO2/kg material 15
8.3
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 270
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
7.8 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 360
110 to 1870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 26
22 to 54
Strength to Weight: Bending, points 22
28 to 52
Thermal Diffusivity, mm2/s 3.1
50
Thermal Shock Resistance, points 27
10 to 25

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.4
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0.18 to 0.28
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0 to 1.0
0 to 0.3
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
5.1 to 6.1
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15