MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. AWS BNi-2

Both N10665 nickel and AWS BNi-2 are nickel alloys. They have 71% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is N10665 nickel and the bottom bar is AWS BNi-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
180
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 84
68
Tensile Strength: Ultimate (UTS), MPa 860
440

Thermal Properties

Latent Heat of Fusion, J/g 310
360
Melting Completion (Liquidus), °C 1620
1000
Melting Onset (Solidus), °C 1570
970
Specific Heat Capacity, J/kg-K 390
490
Thermal Expansion, µm/m-K 10
11

Otherwise Unclassified Properties

Base Metal Price, % relative 75
55
Density, g/cm3 9.3
8.2
Embodied Carbon, kg CO2/kg material 15
9.3
Embodied Energy, MJ/kg 200
130
Embodied Water, L/kg 270
230

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 22
23
Strength to Weight: Axial, points 26
15
Strength to Weight: Bending, points 22
16
Thermal Shock Resistance, points 27
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
2.8 to 3.5
Carbon (C), % 0 to 0.020
0 to 0.060
Chromium (Cr), % 0 to 1.0
6.0 to 8.0
Cobalt (Co), % 0 to 1.0
0 to 0.1
Iron (Fe), % 0 to 2.0
2.5 to 3.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
79.1 to 84.8
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.1
4.0 to 5.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5