MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. AWS E320

N10665 nickel belongs to the nickel alloys classification, while AWS E320 belongs to the iron alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is N10665 nickel and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 45
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 84
77
Tensile Strength: Ultimate (UTS), MPa 860
620

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Melting Completion (Liquidus), °C 1620
1410
Melting Onset (Solidus), °C 1570
1360
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 10
14

Otherwise Unclassified Properties

Base Metal Price, % relative 75
38
Density, g/cm3 9.3
8.2
Embodied Carbon, kg CO2/kg material 15
6.5
Embodied Energy, MJ/kg 200
91
Embodied Water, L/kg 270
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
21
Strength to Weight: Bending, points 22
20
Thermal Shock Resistance, points 27
16

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.070
Chromium (Cr), % 0 to 1.0
19 to 21
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 0 to 2.0
31.8 to 43.5
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 26 to 30
2.0 to 3.0
Nickel (Ni), % 64.8 to 74
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030