MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. EN AC-43000 Aluminum

N10665 nickel belongs to the nickel alloys classification, while EN AC-43000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10665 nickel and the bottom bar is EN AC-43000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 45
1.1 to 2.5
Fatigue Strength, MPa 340
68 to 76
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 860
180 to 270
Tensile Strength: Yield (Proof), MPa 400
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 310
540
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1620
600
Melting Onset (Solidus), °C 1570
590
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
130

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 9.3
2.6
Embodied Carbon, kg CO2/kg material 15
7.8
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 360
66 to 360
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 22
54
Strength to Weight: Axial, points 26
20 to 29
Strength to Weight: Bending, points 22
28 to 36
Thermal Diffusivity, mm2/s 3.1
60
Thermal Shock Resistance, points 27
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
87 to 90.8
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 2.0
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.45
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.1
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15