MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. EN AC-51500 Aluminum

N10665 nickel belongs to the nickel alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10665 nickel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 45
5.6
Fatigue Strength, MPa 340
120
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 860
280
Tensile Strength: Yield (Proof), MPa 400
160

Thermal Properties

Latent Heat of Fusion, J/g 310
430
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1620
630
Melting Onset (Solidus), °C 1570
590
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
88

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 9.3
2.6
Embodied Carbon, kg CO2/kg material 15
9.0
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 270
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
13
Resilience: Unit (Modulus of Resilience), kJ/m3 360
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
52
Strength to Weight: Axial, points 26
29
Strength to Weight: Bending, points 22
36
Thermal Diffusivity, mm2/s 3.1
49
Thermal Shock Resistance, points 27
13

Alloy Composition

Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 2.0
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.1
1.8 to 2.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15