MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. C72700 Copper-nickel

N10665 nickel belongs to the nickel alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N10665 nickel and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 45
4.0 to 36
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 84
44
Shear Strength, MPa 600
310 to 620
Tensile Strength: Ultimate (UTS), MPa 860
460 to 1070
Tensile Strength: Yield (Proof), MPa 400
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 900
200
Melting Completion (Liquidus), °C 1620
1100
Melting Onset (Solidus), °C 1570
930
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 11
54
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
11

Otherwise Unclassified Properties

Base Metal Price, % relative 75
36
Density, g/cm3 9.3
8.8
Embodied Carbon, kg CO2/kg material 15
4.0
Embodied Energy, MJ/kg 200
62
Embodied Water, L/kg 270
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 360
1420 to 4770
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 26
14 to 34
Strength to Weight: Bending, points 22
15 to 26
Thermal Diffusivity, mm2/s 3.1
16
Thermal Shock Resistance, points 27
16 to 38

Alloy Composition

Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
82.1 to 86
Iron (Fe), % 0 to 2.0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3