MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. C84000 Brass

N10665 nickel belongs to the nickel alloys classification, while C84000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N10665 nickel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 45
27
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
42
Tensile Strength: Ultimate (UTS), MPa 860
250
Tensile Strength: Yield (Proof), MPa 400
140

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1620
1040
Melting Onset (Solidus), °C 1570
940
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
17

Otherwise Unclassified Properties

Base Metal Price, % relative 75
30
Density, g/cm3 9.3
8.6
Embodied Carbon, kg CO2/kg material 15
3.0
Embodied Energy, MJ/kg 200
49
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
58
Resilience: Unit (Modulus of Resilience), kJ/m3 360
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 26
8.2
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 3.1
22
Thermal Shock Resistance, points 27
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 0 to 2.0
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.010
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
0.5 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7