MakeItFrom.com
Menu (ESC)

N10665 Nickel vs. C95410 Bronze

N10665 nickel belongs to the nickel alloys classification, while C95410 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N10665 nickel and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 45
9.1 to 13
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 84
43
Tensile Strength: Ultimate (UTS), MPa 860
620 to 740
Tensile Strength: Yield (Proof), MPa 400
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 900
230
Melting Completion (Liquidus), °C 1620
1040
Melting Onset (Solidus), °C 1570
1030
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 11
59
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
14

Otherwise Unclassified Properties

Base Metal Price, % relative 75
28
Density, g/cm3 9.3
8.2
Embodied Carbon, kg CO2/kg material 15
3.3
Embodied Energy, MJ/kg 200
54
Embodied Water, L/kg 270
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 360
280 to 630
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 26
21 to 25
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 3.1
16
Thermal Shock Resistance, points 27
22 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 0 to 1.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
83 to 85.5
Iron (Fe), % 0 to 2.0
3.0 to 5.0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 64.8 to 74
1.5 to 2.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5