MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. 7021 Aluminum

N10675 nickel belongs to the nickel alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10675 nickel and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 47
9.4
Fatigue Strength, MPa 350
150
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 85
26
Shear Strength, MPa 610
270
Tensile Strength: Ultimate (UTS), MPa 860
460
Tensile Strength: Yield (Proof), MPa 400
390

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 910
200
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1370
510
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 9.3
2.9
Embodied Carbon, kg CO2/kg material 16
8.3
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 280
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
41
Resilience: Unit (Modulus of Resilience), kJ/m3 350
1110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
47
Strength to Weight: Axial, points 26
44
Strength to Weight: Bending, points 22
45
Thermal Diffusivity, mm2/s 3.1
59
Thermal Shock Resistance, points 26
20

Alloy Composition

Aluminum (Al), % 0 to 0.5
90.7 to 93.7
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 1.0 to 3.0
0 to 0.050
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 1.0 to 3.0
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 3.0
0 to 0.1
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
0
Niobium (Nb), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.1
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15