MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. ASTM A225 Steel

N10675 nickel belongs to the nickel alloys classification, while ASTM A225 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is ASTM A225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 47
21 to 23
Fatigue Strength, MPa 350
330 to 390
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 85
73
Shear Strength, MPa 610
390 to 520
Tensile Strength: Ultimate (UTS), MPa 860
620 to 830
Tensile Strength: Yield (Proof), MPa 400
460 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 910
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 11
52
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 80
2.3
Density, g/cm3 9.3
7.8
Embodied Carbon, kg CO2/kg material 16
1.8
Embodied Energy, MJ/kg 210
24 to 25
Embodied Water, L/kg 280
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
120 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 350
580 to 820
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
22 to 29
Strength to Weight: Bending, points 22
21 to 25
Thermal Diffusivity, mm2/s 3.1
14
Thermal Shock Resistance, points 26
18 to 24