MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. ASTM B817 Type I

N10675 nickel belongs to the nickel alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N10675 nickel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
100
Elongation at Break, % 47
4.0 to 13
Fatigue Strength, MPa 350
360 to 520
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 85
40
Tensile Strength: Ultimate (UTS), MPa 860
770 to 960
Tensile Strength: Yield (Proof), MPa 400
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 910
340
Melting Completion (Liquidus), °C 1420
1600
Melting Onset (Solidus), °C 1370
1550
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 11
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 80
36
Density, g/cm3 9.3
4.4
Embodied Carbon, kg CO2/kg material 16
38
Embodied Energy, MJ/kg 210
610
Embodied Water, L/kg 280
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 350
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
35
Strength to Weight: Axial, points 26
48 to 60
Strength to Weight: Bending, points 22
42 to 49
Thermal Diffusivity, mm2/s 3.1
2.9
Thermal Shock Resistance, points 26
54 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.5
5.5 to 6.8
Carbon (C), % 0 to 0.010
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 1.0 to 3.0
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 1.0 to 3.0
0 to 0.4
Manganese (Mn), % 0 to 3.0
0
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
0
Niobium (Nb), % 0 to 0.2
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.1
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
87 to 91
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4