MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. EN 1.4034 Stainless Steel

N10675 nickel belongs to the nickel alloys classification, while EN 1.4034 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 47
11 to 14
Fatigue Strength, MPa 350
230 to 400
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 85
76
Shear Strength, MPa 610
420 to 540
Tensile Strength: Ultimate (UTS), MPa 860
690 to 900
Tensile Strength: Yield (Proof), MPa 400
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Maximum Temperature: Mechanical, °C 910
770
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1370
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 11
30
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 80
7.0
Density, g/cm3 9.3
7.7
Embodied Carbon, kg CO2/kg material 16
2.0
Embodied Energy, MJ/kg 210
27
Embodied Water, L/kg 280
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 350
400 to 1370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 26
25 to 32
Strength to Weight: Bending, points 22
22 to 27
Thermal Diffusivity, mm2/s 3.1
8.1
Thermal Shock Resistance, points 26
24 to 32

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.010
0.43 to 0.5
Chromium (Cr), % 1.0 to 3.0
12.5 to 14.5
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 1.0 to 3.0
83 to 87.1
Manganese (Mn), % 0 to 3.0
0 to 1.0
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
0
Niobium (Nb), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0