MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. EN 1.4807 Stainless Steel

N10675 nickel belongs to the nickel alloys classification, while EN 1.4807 stainless steel belongs to the iron alloys. They have 40% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 47
4.5
Fatigue Strength, MPa 350
120
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 85
75
Tensile Strength: Ultimate (UTS), MPa 860
480
Tensile Strength: Yield (Proof), MPa 400
250

Thermal Properties

Latent Heat of Fusion, J/g 320
320
Maximum Temperature: Mechanical, °C 910
1000
Melting Completion (Liquidus), °C 1420
1390
Melting Onset (Solidus), °C 1370
1350
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 11
12
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 80
39
Density, g/cm3 9.3
8.0
Embodied Carbon, kg CO2/kg material 16
6.8
Embodied Energy, MJ/kg 210
97
Embodied Water, L/kg 280
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
18
Resilience: Unit (Modulus of Resilience), kJ/m3 350
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 3.1
3.2
Thermal Shock Resistance, points 26
12

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.010
0.3 to 0.5
Chromium (Cr), % 1.0 to 3.0
17 to 20
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 1.0 to 3.0
36.6 to 46.7
Manganese (Mn), % 0 to 3.0
0 to 2.0
Molybdenum (Mo), % 27 to 32
0 to 0.5
Nickel (Ni), % 51.3 to 71
34 to 36
Niobium (Nb), % 0 to 0.2
1.0 to 1.8
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
1.0 to 2.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0