MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. EN 1.4945 Stainless Steel

N10675 nickel belongs to the nickel alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 47
19 to 34
Fatigue Strength, MPa 350
230 to 350
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 85
77
Shear Strength, MPa 610
430 to 460
Tensile Strength: Ultimate (UTS), MPa 860
640 to 740
Tensile Strength: Yield (Proof), MPa 400
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 910
920
Melting Completion (Liquidus), °C 1420
1490
Melting Onset (Solidus), °C 1370
1440
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 11
14
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 9.3
8.1
Embodied Carbon, kg CO2/kg material 16
5.0
Embodied Energy, MJ/kg 210
73
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 350
210 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
22 to 25
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 3.1
3.7
Thermal Shock Resistance, points 26
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.010
0.040 to 0.1
Chromium (Cr), % 1.0 to 3.0
15.5 to 17.5
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 1.0 to 3.0
57.9 to 65.7
Manganese (Mn), % 0 to 3.0
0 to 1.5
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
15.5 to 17.5
Niobium (Nb), % 0 to 0.2
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.1
0.3 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.015
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
2.5 to 3.5
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0