MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. EN 2.4878 Nickel

Both N10675 nickel and EN 2.4878 nickel are nickel alloys. They have 54% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 47
13 to 17
Fatigue Strength, MPa 350
400 to 410
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 85
78
Shear Strength, MPa 610
750 to 760
Tensile Strength: Ultimate (UTS), MPa 860
1210 to 1250
Tensile Strength: Yield (Proof), MPa 400
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 320
330
Maximum Temperature: Mechanical, °C 910
1030
Melting Completion (Liquidus), °C 1420
1370
Melting Onset (Solidus), °C 1370
1320
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 11
11
Thermal Expansion, µm/m-K 11
12

Otherwise Unclassified Properties

Base Metal Price, % relative 80
80
Density, g/cm3 9.3
8.3
Embodied Carbon, kg CO2/kg material 16
10
Embodied Energy, MJ/kg 210
150
Embodied Water, L/kg 280
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 350
1370 to 1540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
41 to 42
Strength to Weight: Bending, points 22
31
Thermal Diffusivity, mm2/s 3.1
2.8
Thermal Shock Resistance, points 26
37 to 39

Alloy Composition

Aluminum (Al), % 0 to 0.5
1.2 to 1.6
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0 to 0.010
0.030 to 0.070
Chromium (Cr), % 1.0 to 3.0
23 to 25
Cobalt (Co), % 0 to 3.0
19 to 21
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 1.0 to 3.0
0 to 1.0
Manganese (Mn), % 0 to 3.0
0 to 0.5
Molybdenum (Mo), % 27 to 32
1.0 to 2.0
Nickel (Ni), % 51.3 to 71
43.6 to 52.2
Niobium (Nb), % 0 to 0.2
0.7 to 1.2
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.0070
Tantalum (Ta), % 0 to 0.2
0 to 0.050
Titanium (Ti), % 0 to 0.2
2.8 to 3.2
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0.030 to 0.070