MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. C18400 Copper

N10675 nickel belongs to the nickel alloys classification, while C18400 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 47
13 to 50
Poisson's Ratio 0.31
0.34
Rockwell B Hardness 88
16 to 84
Shear Modulus, GPa 85
44
Shear Strength, MPa 610
190 to 310
Tensile Strength: Ultimate (UTS), MPa 860
270 to 490
Tensile Strength: Yield (Proof), MPa 400
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 910
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1370
1070
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 11
320
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
80
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
81

Otherwise Unclassified Properties

Base Metal Price, % relative 80
31
Density, g/cm3 9.3
8.9
Embodied Carbon, kg CO2/kg material 16
2.6
Embodied Energy, MJ/kg 210
41
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 350
54 to 980
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 26
8.5 to 15
Strength to Weight: Bending, points 22
10 to 16
Thermal Diffusivity, mm2/s 3.1
94
Thermal Shock Resistance, points 26
9.6 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 1.0 to 3.0
0.4 to 1.2
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
97.2 to 99.6
Iron (Fe), % 1.0 to 3.0
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 3.0
0
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
0
Niobium (Nb), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.7
Residuals, % 0
0 to 0.5