MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. C69710 Brass

N10675 nickel belongs to the nickel alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 47
25
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 85
41
Shear Strength, MPa 610
300
Tensile Strength: Ultimate (UTS), MPa 860
470
Tensile Strength: Yield (Proof), MPa 400
230

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 910
160
Melting Completion (Liquidus), °C 1420
930
Melting Onset (Solidus), °C 1370
880
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 11
40
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 80
26
Density, g/cm3 9.3
8.3
Embodied Carbon, kg CO2/kg material 16
2.7
Embodied Energy, MJ/kg 210
44
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
99
Resilience: Unit (Modulus of Resilience), kJ/m3 350
250
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 26
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 3.1
12
Thermal Shock Resistance, points 26
16

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 1.0 to 3.0
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
75 to 80
Iron (Fe), % 1.0 to 3.0
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 3.0
0 to 0.4
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
0
Niobium (Nb), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.1
2.5 to 3.5
Sulfur (S), % 0 to 0.010
0
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
13.8 to 22
Residuals, % 0
0 to 0.5