MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. C70600 Copper-nickel

N10675 nickel belongs to the nickel alloys classification, while C70600 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 47
3.0 to 34
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 85
46
Shear Strength, MPa 610
190 to 330
Tensile Strength: Ultimate (UTS), MPa 860
290 to 570
Tensile Strength: Yield (Proof), MPa 400
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 910
220
Melting Completion (Liquidus), °C 1420
1150
Melting Onset (Solidus), °C 1370
1100
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 11
44
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 80
33
Density, g/cm3 9.3
8.9
Embodied Carbon, kg CO2/kg material 16
3.4
Embodied Energy, MJ/kg 210
51
Embodied Water, L/kg 280
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 350
16 to 290
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 26
9.1 to 18
Strength to Weight: Bending, points 22
11 to 17
Thermal Diffusivity, mm2/s 3.1
13
Thermal Shock Resistance, points 26
9.8 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 1.0 to 3.0
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
84.7 to 90
Iron (Fe), % 1.0 to 3.0
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 3.0
0 to 1.0
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
9.0 to 11
Niobium (Nb), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.5