MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. C95500 Bronze

N10675 nickel belongs to the nickel alloys classification, while C95500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 47
8.4 to 10
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 85
44
Tensile Strength: Ultimate (UTS), MPa 860
700 to 850
Tensile Strength: Yield (Proof), MPa 400
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 910
230
Melting Completion (Liquidus), °C 1420
1050
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 11
42
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 80
28
Density, g/cm3 9.3
8.2
Embodied Carbon, kg CO2/kg material 16
3.5
Embodied Energy, MJ/kg 210
57
Embodied Water, L/kg 280
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 350
420 to 950
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 26
24 to 29
Strength to Weight: Bending, points 22
21 to 24
Thermal Diffusivity, mm2/s 3.1
11
Thermal Shock Resistance, points 26
24 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.5
10 to 11.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 1.0 to 3.0
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
78 to 84
Iron (Fe), % 1.0 to 3.0
3.0 to 5.0
Manganese (Mn), % 0 to 3.0
0 to 3.5
Molybdenum (Mo), % 27 to 32
0
Nickel (Ni), % 51.3 to 71
3.0 to 5.5
Niobium (Nb), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5