MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. R30008 Cobalt

N10675 nickel belongs to the nickel alloys classification, while R30008 cobalt belongs to the cobalt alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is R30008 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
210
Elongation at Break, % 47
1.1 to 73
Fatigue Strength, MPa 350
320 to 530
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 85
83
Tensile Strength: Ultimate (UTS), MPa 860
950 to 1700
Tensile Strength: Yield (Proof), MPa 400
500 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 320
320
Melting Completion (Liquidus), °C 1420
1400
Melting Onset (Solidus), °C 1370
1330
Specific Heat Capacity, J/kg-K 380
450
Thermal Expansion, µm/m-K 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 80
95
Density, g/cm3 9.3
8.4
Embodied Carbon, kg CO2/kg material 16
8.1
Embodied Energy, MJ/kg 210
110
Embodied Water, L/kg 280
400

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 350
590 to 2720
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
31 to 56
Strength to Weight: Bending, points 22
25 to 37
Thermal Shock Resistance, points 26
25 to 44

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0
0 to 0.0010
Carbon (C), % 0 to 0.010
0 to 0.15
Chromium (Cr), % 1.0 to 3.0
18.5 to 21.5
Cobalt (Co), % 0 to 3.0
39 to 42
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 1.0 to 3.0
7.6 to 20
Manganese (Mn), % 0 to 3.0
1.0 to 2.0
Molybdenum (Mo), % 27 to 32
6.5 to 7.5
Nickel (Ni), % 51.3 to 71
15 to 18
Niobium (Nb), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 1.2
Sulfur (S), % 0 to 0.010
0 to 0.015
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0