MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. 2025 Aluminum

N12160 nickel belongs to the nickel alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
15
Fatigue Strength, MPa 230
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 500
240
Tensile Strength: Ultimate (UTS), MPa 710
400
Tensile Strength: Yield (Proof), MPa 270
260

Thermal Properties

Latent Heat of Fusion, J/g 360
400
Maximum Temperature: Mechanical, °C 1060
190
Melting Completion (Liquidus), °C 1330
640
Melting Onset (Solidus), °C 1280
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 90
10
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 8.5
7.9
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 400
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
55
Resilience: Unit (Modulus of Resilience), kJ/m3 180
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 24
37
Strength to Weight: Bending, points 22
40
Thermal Diffusivity, mm2/s 2.8
58
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0 to 0.1
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 0 to 3.5
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0.4 to 1.2
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
0.5 to 1.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.15
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15