MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. 242.0 Aluminum

N12160 nickel belongs to the nickel alloys classification, while 242.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is 242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 45
0.5 to 1.5
Fatigue Strength, MPa 230
55 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 500
150 to 240
Tensile Strength: Ultimate (UTS), MPa 710
180 to 290
Tensile Strength: Yield (Proof), MPa 270
120 to 220

Thermal Properties

Latent Heat of Fusion, J/g 360
390
Maximum Temperature: Mechanical, °C 1060
210
Melting Completion (Liquidus), °C 1330
640
Melting Onset (Solidus), °C 1280
530
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 11
130 to 170
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 90
12
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 8.5
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 400
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
1.3 to 3.4
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 24
16 to 26
Strength to Weight: Bending, points 22
23 to 32
Thermal Diffusivity, mm2/s 2.8
50 to 62
Thermal Shock Resistance, points 19
8.0 to 13

Alloy Composition

Aluminum (Al), % 0
88.4 to 93.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0 to 0.25
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 0 to 3.5
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
1.7 to 2.3
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
0 to 0.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.25
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15