MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. 4004 Aluminum

N12160 nickel belongs to the nickel alloys classification, while 4004 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is 4004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
2.4
Fatigue Strength, MPa 230
42
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 500
63
Tensile Strength: Ultimate (UTS), MPa 710
110
Tensile Strength: Yield (Proof), MPa 270
60

Thermal Properties

Latent Heat of Fusion, J/g 360
540
Maximum Temperature: Mechanical, °C 1060
160
Melting Completion (Liquidus), °C 1330
600
Melting Onset (Solidus), °C 1280
560
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 90
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 8.5
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 400
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
25
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 24
12
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 2.8
58
Thermal Shock Resistance, points 19
5.1

Alloy Composition

Aluminum (Al), % 0
86 to 90
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 0 to 3.5
0 to 0.8
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
9.0 to 10.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15