MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. 5082 Aluminum

N12160 nickel belongs to the nickel alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 45
1.1
Fatigue Strength, MPa 230
110 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 500
210 to 230
Tensile Strength: Ultimate (UTS), MPa 710
380 to 400
Tensile Strength: Yield (Proof), MPa 270
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 360
400
Maximum Temperature: Mechanical, °C 1060
180
Melting Completion (Liquidus), °C 1330
640
Melting Onset (Solidus), °C 1280
560
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 90
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 8.5
8.9
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 400
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
670 to 870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 24
39 to 41
Strength to Weight: Bending, points 22
43 to 45
Thermal Diffusivity, mm2/s 2.8
54
Thermal Shock Resistance, points 19
17 to 18

Alloy Composition

Aluminum (Al), % 0
93.5 to 96
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0 to 0.15
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 0 to 3.5
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 1.5
0 to 0.15
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.1
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15